
THE MATHEMATICS OF DECISION·MAKING

by
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That mathematics is a tool for decision-making is well
known. Not too long ago a group of American and German
educators proposed a degree in the essential preparation for
executives. More and more scientists are becoming aware of the
fact that no form of human knowledge can have any claim to
permanence or timelessness unless it can render itself amenable
to the cold and sharp analysis of symbols and axiomatics. Plato
himself expressed this undying faith in the power of mathema
tical reasoning when he hung on the portals of his Academy the
admonishing words: "Let no ignorant geometry enter here".
To the French philosopher, Rene Descartes, everything inevita
bly turns into mathematics. The great English physicist, Lord

. Kelvin, once said that if you could speak of a phenomenon but
could not represent that phenomenon in the language of sym
bols, then you could not say you know anything about it; if you
could, then you might say you know something about it.

Strictly speaking, the problem of decision making is essen
tially a problem of logic. In fact, the first formal decision prob
lems were formulated and solved in the domain of mathemtecal
logic itself. While perhaps some of these solved decision prob
lems are the finest and profoundest examples of human cere
bration, their exposition is out of the question in a paper such
as ours. Specifically, the problem we would like to consider
may be formulated as follows:

Statement of the Problem: Given any class A of possible
courses of action and a certain utility index or function f de
fined over these various courses of action and whose values are

>I< Formerly Assistant Professor, Ateneo de Manila University.
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• THE MATHEMATICS OF DECISION-MAKING

(partiallly) ordered, the fundamental problem is to determine
that course of action or those courses of action m which

maximize or minimize the utility index. In formal symbols,

this is the determination of an element m of A such

that. f(m) ~ r(x)

bers x of A.

or f(m) < f(x) for all possible mem-
=

Quite often, the most difficult aspect of this problem is to
• find the appropriate utility index for a specific case. The litera

ture on the subject abounds in many differing views concerning
the notion of utility and its axiomatic foundation. The finer
and more subtle points of the concept have led to some ques
tions of a highly philosophical nature that we cannot enter into
here. Suffice it to say, utility, whether in terms of money, ex
pected value, degree of moral obligation or commitment, will be
assumed as something familiar to everyone of us. Sometimes,
we shall treat it like any arithmetical quantity which may be
added, subtracted, multiplied,and divided; at other times, we
shall not and the only property of it that we will accept is it par
tial ordering. A warning therefore at this point must be given
the listener who may refer to the existing literature: our notion
of utility is a little loose and may not coincide with the accep-

• ted one.

There are no known general methods that can effect a uni
versal solution of the main problem of decision-making stated
above. Two well-known theories, the theory of games and the
theory of linear programing, however, turns out to be very use
full in solving a very large variety of .decision problems of the
type mentioned. These are correspondingly discussed in some
detail in the following sections.
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1. The Theory of Linear Programing.

Linear programming is primarily designed to solve

the following general mathematical problem: To

determine a set of n real numbers. xl~ 000' Xn
optimizing (ioe. maximizing or minimizing) a linear

function f(xl' ••• '~) = aIxl + 8:2x2 + ••• + anxn
subject to the restricting conditions:

Xl ~ 0, x2 ~ 0, ••• , xn ~ 0,

bnx1 + b12x2 + 0 •• + blnxn ~ c1 ,

b:21xI + 'b:22x2 + ...... b2nxn ~ c2,
•• 0 •• 0 •• • •••• 0 ••••• • ••• • ••••••• 0

The fact that there are no restricti~ conditions of.
the form

in this formulation is no less of generality, since any inequality
of this form may be reduced into the desired form by merely
multiplying both sides of the inequality by -1, i.e.

Also, the case of equality is adequately covered

by the present formulation, for any quality

b1x1 + b2X2 + 00. + bnxn = c is in fact equivalent

to the inequali ti es b:Lxl + b2~ + 00. + bnxn ~ c

and b1xl + b2~ + •• 0+ bnxn ~ c.
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• THE MATHEMATICS OF DECISION-MAKING

It is easy to see that linear programming is indeed a spe
cial case of the fundamental problem of decision-making stated
above, where the set of all possible courses of action A consists
of all n-tuples of real numbers (x , ... , x ) subject to the res-

1 n
tricting inequalities and

where f(xl' u., ~) = 8 I xl + "' + 8nxn

denotes the utility index.

Mathematically, the problem of linear programming is a
• problem of maximization or minimization, but the methods of

infinitesimal and variation calculus cannot be used in hand
ling it. The maximum and minimum points in programming
problems often lie on the boundary of its domain of definition
and not in its interior. The theory of convex sets and topology
proved to be more important tools in searching tor their solu
tions.

Let us present a brief and geometrical account of this me
thod in 3-dimensional space. A set of points in 3-space is said
to be convex if and only if the segment joining any two points
of the set wholly belong to the set. Examples of convex sets
are the collections of all points inside a sphere, a cube, a square,

~ a polygon, a cylinder, and line segment. It may be easily shown

r.. that the set C1n n Colt of points common to a number

of convex sets C , , C (usually called their intersection)
1 n

is always a convex set. For, suppose P and Q are any two
points of the intersection; then by definition of convexity both
P and Q must belong to each of the convex sets C , ... , C .

1, n
Hence, the line segment joining P and Q must be totally
contained in each of the convex sets C, ... , C and there-

1 n
free in their intersection too.

After these preliminaries let us now consider the linear
programming problem in 3-dimensions: To determine a point
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(x,y,z) in 3-space that optimizes, say minimizes, the linear func
tion Ax + By + Cz subject to the linear inequalities

x ~ 0, y ~ 0, z? U,

alx ~ ~y ~ c1z f d1,
00 ••••• 00 •••• 00.0000

The collection of all points (x.y,z) satisfying anyone of these
inequalities are points lying on and on side of a plane and
hence a convex set. Consequently, the collection of all points
that satisfy all the above inequalities which is the intersection
of all those convex sets must also be a convex set, in fact, a
convex polyhedron. Geometrically speaking, the problem is
.hen to determine the coordinates of the vertex, edge, or face
of the polyhedron lying on a plane Ax + By + Cz = D near
est to the origin. The general linear programming problem is
analogously the determination of that hyperface of a convex
hyper-polyhedron in many-dimensional space lying on some hy
perplane nearest to the origin.

There are a number of well-known methods of effecting
such a determination, but these fall outside the realm of our
present interests. Specific examples will be given and solved
In a manner we deem appropriate.

2. The Theory of Games.

The theory of games is a formal mathematization of con
flict and sometimes by chance too. This is the case, for instance
is partly controlled by each of the opposing parties in the con
flict and sometimes by chance too. This is the case, for instance,
in parlor games such as chess, poker, bridge, and canasta, and
in many situations in war, politics, ethics, and economics. Game
theory goes beyond the classical theory of probability by empha
sizing the strategic aspects of conflict raher than its aspect due
to pure chance.
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• THE MATHEMATICS OF DECISION-MAKING

P then
2

pays P the amoun t specified by the following (payoff)
. 1
matrix:

Consider a very simple example: the game where player
p picks a number from a collection consisting of 1, 2, and

1
3 and where player P picks one of the number 1, 2, 3, and

2 .
4. after their choices have been made simoltaneouly

•
(

811 1112 813

~l ~2 ~3

8 31 8~ 8 33

then P pays P
2 1

is negative, what actually happens is

choose j

When a
ij

pays P the amount equal to the absolute value of
2

and P
2

by a ...
IJ

that P
1

This matrix signifies, for instance, that if P choose i,
1

the amount given

So,'
1)

P and P inde-
1 2

pendently and simultaneously so that neither one of them
knows what the other is choosing.

The immediate query whose answer we want is: What is
the best possible way for P or P to play this simple game?

1 2
Surely, if P knows thath P is choosing 4 and a is the

1 2 m4
largest of the numbers a , a , a ,then P should choose

14 24 34
m. But the numbers are to be chosen by

•

One may look at it, however, in this way, If P happens
1

to choose 1, the worst that can happen to him is to be paid
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only min a ,the minimum or least of the numbers a ,a ,
lj 11 12

a , and a . Analogous remarks apply when P happens to
13 14 1

choose 2 or 3. A possible strategy P may then use is to pick
1

that number which realizes the best of his worts payoff, that
is, max min a., ' This is the so called maximin strategy of

i j IJ .

P , Under this strategy, player P is thus assured of get-
1 1

\

ting at least the amount max min a." Remembering that the
i j IJ

payments of P to P are just the negatives of the pay-
1 2 .

ments of P to P , it follows then that P can also en-
21 2

sure himself of getting at least the amount max min -a =
j i ij

-min max a and by so doing he can also prevent P from
j i ij 1

getting more than min max a Hence if it happens that
j i . ij

max min a., = min max a", then player P can realize the
i j IJ j i lJ 1

value v = max min a and the best that P
i j ij 2

prevent him from getting more than v, from the point of
view of P ,he can realize the value -v and the best that P

2 1
can do is to prevent him from getting more than ~v, Unless
there is therefore any reason to believe that either one of them
is going to play wild or that one of them has fixed habits, then
thebest strategy for both P and P is to play those numbers

1 2
i", j* respectively such that a '*'* = max min a = min

1 J i j ij j

max a.,. They are called the optimal pure stratgies of P and P
i 1J 1 2

respectively. The pair (i*, j *) is also called a saddle point since
a,,* < a.*,* < 9.*, foreach i=1,2,3, and each j=1,2,3,4,

IJ = J J =- 1 J
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• THE MATHEMATICS OF DECISION-MAKING

It occurse on the matrix where the entry is the minimum of its
row and the maximum of its column. If the game mentioned
above, for example, has the specific payoff matrix

(-;
-6

.3

5
-2

1

4

o
2~)
-5

•

•

•

then the optimal pure strategy for P is to choose 2 and 3 for
1

P , inasmuch as (2 ,3) is a saddle point. Of course, it is quite
2

clear in this instance that P is going to lose, but under the
2

circumtances he can really not do anything better without the
danger of incurring a greater loss. We may say that the game is
simply rigged against him.

It remains still to propose an optimal strategy for playing
a rectagular game with no saddle points like

Should player PI decide to use his maximin strategy, then he

would he assured of getting at least max {min a.., min a .} =
j IJ j 2J

max { 2, 3 } ~ 3. P1 may realize this by playing 2. On the other

hand, suppose P were to play also 2 which is his maximin
2

strategy; then clearly P could do better playing 1, for then
1 .

he would realize a payoff of 6. But, of course, if P knows that
2

P is playing 1, then he could do better by playing also 1; for
1
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in that case, P would have to only pay P 2. and naturally,
2 1

if P is aware that P is going to play 1, he should play
1 2

2 to realize the payoff 7. And so on. This argument has thus
led us to a vicious circle.

•
domize his choices and so with P . Let

2
choosing respectively 1 and 2 and y 1-yprobalities of P

t
be the probabilities of P choosing 1 and 2 respectively. In

2
this case, the mathematical expectation of P will be

1

Inasmuch as each player would like to play in such a man
ner that the other cannot anticipate or guess his moves, it would
rather seem that the best thing for player P to do IS to ran

I
x and l-x be the

E(x,y) = 2xy + 6:r.(l-y) + 7(l-x)y + )(l-x)(l-y)

1 ) ~=-8xy + )x + 4y + 3 = -8 (x ~ '2)( y - 8) 00} 2 •

Hence, if P picks that randomized strategy such that
1

x = 1/2 he can be sure that his expected payoff will be at least
9/2. By picking that randomized strategy such that y == 3/8, •
P can also prevent P from increasing his expected payoff

2 1
to more than 9/2. P might just as well settle himself to

I
playing 1 and 2 with the same probability 1/2 and P might
. 1
just as well play 1 and 2 with respective probabilities 3/8 and
5/8. The pair of probabilities (l/2, 3/8) is actually a saddle
point of the expectation function E(x,y). The quantity v =
E(1/2, 3/8) is called the value of the game and the probability
pairs (l/2, 1/2) and (3/8, 5/8) the optimal mixed strategies of
P and P respectively.

1 2
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The ideas treated in the previous paragraph may be gen
eralized to any m by n matrix game. For any rectangu
lar matrix game, the fundamental theorem of matrix game
theory states that there always exist mixed optima] strategies
for both players. If (a.. ) is any such m by n matrix game,

IJ
then the value v of the game and the optimal mixed strategies
(x , ... , x ) and (y , ... , y ) of players P and P res-

1 m 1 n 1 2
pectively are in fact solutions of the following set of inequali
ties:

• Xl + ~ + ••• + ')n =1,

xl~' ~~O, ••• , xm ? 0

.......................

Y1 + Y2 + ••• + Yn = 1

Yl~O, Y2~0, ••• , Yn ~ 0,

811Y1+812Y2+·· .+81nYn-; v,

As a first illustration, consider the well-known game of
Paper, Stone, and Scissors. In this game both players must
simultaneously name one of the objects stone, paper, or scis
sors. Paper defeats stone (since stone may be wrapped with
paper), stone defeats scissors (since stone may be used for
hammering scissors), and scissors defeat paper (since scis
sors may cut paper). The player who chooses the winning ob
ject say wins a peso; if both players choose the same object,
the game is a draw.

The payoff matrix for this game is then

•

fJ

St

Sc

P

(-~
119
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The corresponding mixed strategies (\, x2' x3) and (Yi' Y2' Y3)

for players P and P are the solutions of the following set
1 2

of inequalities and equalities:

Xl + x2 + x3 =l~ Yl + Y2 + Y3 =1,

- x2 -+- x3 ~ v , Y2 - Y3 ~ v,

xl - x3 ~ v, - Yl + Y3 § v ,

- xl + ~ ~ v , Yl - Y2 ~ v o •
By considering the case when the inequalities are in fact equal
ities, it is easily seen that

constitute a solution. The optimal way of how to play this game
therefore is to choose paper, stone, or scissors randomly each
with probability 1/3.

As another example of a game of strategy, let us consider
the ancient Italian game of Two Finger Morra. This game is
played by two persons, each of whom shows one or two fingers
simultaneously calls his guess of the number of fingers shown
by his opponent. If a player guesses correctly, he wins an
amount equal to the sum of fingers shown by himself and his •
opponent; otherwise the game is a draw. If (i,j) denotes the
instance when a player shows i fingers and guesses that his
opponent shows j fingers, then the payoff matrix is given
by
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By trial and error, one finds the solvable combination of
equalities and strict inequalities which determine the value and
optimal mixed strategies are

Xl + ~ + x3 + x4 = 1, Y1 + Y2 + Y3+ Y4= 1

-2~ + 3x3 > v, 2Y2 - 3Y3 < v,

2x1 - JX4 ~ v, -2Y1 + JY4 ~ v,

-3x1 + 4x4 ~ v, 3Y1 - 4Y4 ~ v,.. JX2 - 4x3 > v, 3Y2 - 4'Y3 < v.

It is not difficult to verify that any quadruple (0, p, 1-p, 0)
constitutes an optimal mixed strategy for either player as long
as

20/35 ~ p ~ 21/35.

A distinct and important type of a two-person game is one
where player P is Mother Nature. Nature, of course, can-

2
not be considered as a conscious opponent like a human being,
who takes advantage of our mistakes. For this reason, playing
with Nature requires a different method of approach. There
are four known criteria for a good strategy against Nature, but

• none of these can be said to be better than the others. Let us
describe each of these criteria in the context of the following
matrix game against Nature with states (Nature's strategies)
8 , 8 ,s , and 8 :.
1 2 3 4

8 1 82 8 3 84

1 (0 0 -2 -1

2 -1 -1 -1 -1

3 -2 2 -2 -2

'+ -1 1 -2 -2
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C . The Maximum Criterion. The good strategy for this
1

criterion is to choose that course of action which will maximize
the smallest payoffs corresponding to each of the possible
courses of action. The respective minima, for example, of each
of the four choices 1, 2, 3, and 4 are respectively -2, -1, and -2.
The maximin strategy advises that choice which assures one of a
payoff equal to the maximum of the minima -2, -1, -2, and -2.
This choice is therefore no other than 2.

•

The maximin creterion is perhaps the safest and most pes
simistic one of them all. It is the best answer to Mother Na-
ture's most unfavorable probability distribution function over •
her states or strategies.

C . The Minimax Regret Criterion. If, m the game men
2

tioned above, s is the actual state of Nature, then P may
2 1

be said to have no regret in choosing 3. He will, on the other
hand, have regrets if he chooses either 1,2, or 4. A measure of
this regret is then the maximum payoff in the s -column minus

2
the correspoding entry in that column. Extending this idea to
each of the other columns or states of Nature, we will obtain
the following (regret) matrix:

2

3
o
1

1

o
1

1

o
o
1

1

•

The good strategy proposed by the minimax regret criterion
is that one which minimizes the largest payoffs in each row of
the regret matrix. This criteria thus advises P to choose
strategy 4 over all others.
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1n general, the regret payoff matrix of an m b<J

n rectangular matrix game (a .. ) is the matrix whose
lJ

{i,j}th entry is the nwnber max ak j - a i j for each
k

i ~ 1, 2, ••• , m and j =1, 2, ••• , n.

C . The Laplacian Criterion. The criterion of Laplace as-
3

serts that inasmuch as one does not know in any way which
state of Nature is true, the most logical alternative is to assume
that each state is equally likely to occur as any other. The best
strategy under these circumstances of player PI in an m by

n matrix game (a .. ) is to choose that row i whose expecta-
IJ

tion

ail + 8 12 + 0 •• + a i n
n

is maximum. For the game under discussion, this strategy is
given by 1, since the sum of the elements in the first row of the
given payoff matrix is obviously larger than the others.

C . The Criterion of Hurwicz.
4

Hurwics suggested a modification of the maximm criterion
that partly eliminates its extreme pessimism. By fixing
a certain index r between 0 and I, the various values

r max aij + (l - r) min a1. of each row i of an
j . j J

m by n matrix game (.ai j ) is considered. The row

for which this value r ~ a 1 j + (J - r) min 8iJ' is
J' j

maximum is chosen 8S the Hurwicz best strategy.

In the example above, the four rows of the payoff matrix
gives

123
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-2r ~ O(l-r) =-2r, -r - (l.-r) = -1, 2r - 2(1..2') • 4r - 2, and

r _ 2(1-r) =3r - 2 respect1veiy. Whence, if r is greater than 1/4,

then 3 is the good strategy according to criteria of Hurwicz
with index r.

The games we have considered so far are matrix games.
One may feel that these are very restricted forms of games,
but this is far from being so. It can be shown that any game
of strategy played by two persons can actually be normalized
into a matrix game whose strategies consist of all possible ways
of playing' the game from beginning to end. For some of the •
common games like chess and bridge, the payoff matrices may
run to millions and consequently, they are still beyond the
power of even the most powerful computing machines at pre-
sent to solve.

The rest of the communication will now be devoted to ap
plications.

3. Applications to Military Science.

There are two philosophies on which a military tactician
may base his course of action: on what his enemy is capable
of doing or on what his enemy is going to do. An officer in
the United States Armed Forces is for instance enjoined to
choose that decision which offers the greatest probability of
success in view of what the enemy can do, not on what he •
things the enemy is going to do. When viewed thus as a two-
person <game the American philosophy of military action is
actually the maximin-maximax principle. Let us examine this
principle in connection with an actual case that happened du-
ring the last World War in the well known Battle of the Bis-
mark Sea.

Once during the New Guinea campaign, American intel
ligence reported that the Japanese would move a supply and
troop convoy from the port of Rabaul, New Britain to a place ,
called Lae just west of New Britain, on the eastern tip of New,
Guinea. The Japanese convoy could either travel north of New',
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Britain where it is certain there would be poor visibility or
south of the island where the weather would be clear. 'In either
case the trip will take three days. The American commander,
General Kenney, then had two alternatives: either to con
centrate the bulk of his reconnaisance aircraft on the northern
route or on the southern route, Once sighted, the convey could
be bombed until its arrival at Lae. General Kenney's staff es
timated the following possible outcomes measured in bombing
days:

Japanese

Northern Southern

Northern
American

Southern

Thus, by making use of the ideas of game theory General
Kenney decided to concentrate his reconnaisance planes in the
northern route, since (1,1) and (1,2) are the saddle points of
the above payoff matrix. The convoy was in fact sighted after
one day and the Japanese suffered heavy losses. Inspite of this,
the Japanese commander, it must be emphasized, did not err
in his decision. Under the circumstances, he had chosen the
best strategy. In fact, the other strategy open for him could
have inflicted direr consequences.

The following is another example of how military decision
making is done by mathematical methods. Suppose that the
strategic air command is instructed to cripple the enemy's oil
production. This may be done by destroying the enemy's only
oil refinery or its only oil field. Now, there is an acute short
age of plane fuel which therefore limits the supply for this mis
sion to only 24,000 gallons. Any bomber sent to the mission
must have enough fuel for the round trip plus a reserve of 100
gallons. There are two types of bombers available and their
descriptions are as follows:

•

,,
\

\

i
\
"

Bomber Type

1
2

Description Miles/Gallon

Heavy 2
~edium 3

125
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Army intelligence sources have made available the following
information the enemy's oil field and refinery.

Probabiltiy of Success
Distance Heavy Bomber Medium Bomber

..

Oil Field

Oil Refinery

510

600

.15

.25

.10

.20

The problem is how many of each of these bombers should be
dispatched to the oil field and oil refinery in order to maximize
the probability of destroying at least one of the plants: the oil
refinery or the oil field. This problem is of course equivalent
to the problem of minimizing the probability of not destroying
any plant. Assume that no damage is inflicted on either plant
by a bomber that fails to destroy it. .

If x and x denote the number of heavy bombers
11 12

that should be sent to the oil field and oil refinery respectively
and x and x the same number of medium bombers that

21 22
should be sent to the oil field and refinery respectively, then
our problem is to minimize the probability

or

-log P ;: o0704lxn + o12483x12 + o045?~1 + .09691x...22

subject to the restrictions on available fuel and planes given by
the following inequalities:

xII'" XU ~ 24 p

~l + ~2 ~ 16

_2(510) x + ~(600) + 2{510) 2(6001-
2 II 2 ~ J ~l + J ~2

+ lOO(xll + x12 + ~1 + JC:22) < 24,0no
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or

It is easily verified that a solution of the problem is given

by Xu = ~1 = 0, ~2 = 16.
This means tl

•

the heavy and medium bombers should be dispatched to the
oil refinery.

Heterogeneity of weapons in any defense air system is ne
cessary. This enables one to cope with the gamut of possible.
attack strategies the enemy may use. The problem connected
with decision-making in such situations may also be mathema
tized. Consider a case of two mobile air defense missile sys
tems, with missile system M especially effective against high
altitude attacks and missile system M' being most effective
against low altitude attacks. The mathematical problem is to
determine the relative proportions of M and M' that will
provide the optimally effective defense.

Tactically, the situation is as follows: a point target (say
an important arsenal) is threatened with attack by fighter- bom
bers. The attack may oncentrate eitehr on low altitude (j = 1)
or on high altitude (j == "2). Due to some navigational and
coordination problems, low altitude attacks are more costly
than high altitude attacks. For this reason, assume that the
enemy can at most only deploy 14 low altitude aircraft or at
most 20 high altitude aircraft. On the other hand, low altitude
aircraft pose more threat and its destructive potential e == 1

I

is twice that of high altitude aircraft which is e == 1/2. The
2

missile systems are supposed to be deployed along circles
around the target and for each radius R from the point tar
get there is associated a certain kill potential K .. (R) which

1J
depends 00. the mode of .attack j and type of defense i. The

• kill potential for each unit of weapon corresponding to the
radii 0, 10, and 20 miles is given by the following table:
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Deployment Low altitude High altitude Low altitude High altitude
Radius (R.) attack (j==1) attack 0== 2) attack (j==1j attack 0=2)

1

0 0 6 0 0

10 1 2 3 1

20 1/2 1 1/2 0

The other radii like the last are of no significance in the de
fense of the target, since their consideration will add no domi
nating strategies in the game that will be considered.

Weapon M costs 50 thousand dollars each and weapon
M' costs 25 thousand dollars each and the total operational
.budget is 100 thousand dollars. There are then only three feasi
ble weapon combinations under the conditions:

i··

Weapon Combination Weapon M Weapon M'
(k) Force Level Force Level

1 2 0

2 1 2

3 0 4

Since also the only significant and tenable radii of deployment
are either R = 0 or R == 10, then the only two possible de
ployment for the available weapons are:

y == 1: Weapon M at R = 0 and weapon M' at R = 10
and

y = 2: Weapon M at R =10 and weapon M' at R = 10.

The payoff matrices associated with each weapon combi
nation k and each weapon deployment y is computed as
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where

the number of weapons K in the weapon combination

k , n~,::: the number of weapons M' in combination k,

~j(R~) =the kill potential relative to the mode of

attack j and type of defense M deployed accor

ding to y .at a radius ~ from the target, and

~, j (~,) = the kill potential relative to j and

defense M' deployed according to y at a radius

R~ from the target. Hence, the possible payoff

matrices corresponding to the various weapon combi

nations are:

~'

•

k =1

k = 2

k = 3

j ::: 1 j ::: 2

y =1 C4 :)y ::: 2· 12

y = 1 ( 8 :)y =2 7

s =1 ( 2 :)y =2 2

•

The values, optimal defense and attack strategies of theserna
trix games are given by

129



•PHILIPPINE STATISTICIAN - SEPTEMBER, 1962

k
Optimal Defense Optimal Attack Value

Strategy 3trategy

1 (0,1) (1,0) 12

1 2 2 1 .1L2 (3'3) ('3''3) 3

:3 (p,l-p) (0,1) 8

In words, this means that for the two-zero combination of
weapons M and M' the best pure strategy for defense is to
deploy weapons M on the rim of the circle of radius 10 miles
from the target. To find the weapon combination that mini
mizes the damage to the target, one selects that weapon com
bination with the biggest value, that is, k = 2. Thus the re
commended defense that will minimize target damage is to use
two of M' and one of M.

4. Application to Ethics.

We shall consider the following ethical problem. Suppose
that two friends of long standing, say Juan and Pedro, hold
positions of the same rank in a corporation. Juan through
some means knows that the vice-presidency is going to be va
cated and filled by either him or Pedro. He also knows that
the actual promotion will hinge on the final judgement of the
corporation's president. Must Juan pass the information to
Pedro?

The utility index in this problem may be taken as the total
good (the summum bonum) that can be achieved. The material
benefit p that will accrue to Juan if he gets the promotion is
equal to that of Pedro if Pedro gets the promotion. Clearly,
there are two possible courses of action for Juan: either to tell
Pedro or not of the impending promotion. If Juan tells Pedro
about it, then certainly Juan will retain the friendship of Pedro
and the corresponding utility index value would be f(Juan in
forms Pedro) = p. However, if Juan decides to keep the secret
to himself, then he loses the friendship of Pedro even if Pedro
never learn of Juan's actuation. Assuming that this lost friend-
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ship is a quantity q, then the corresponding utility value for
this course of action is f(Juan does not inform Pedro) = P - q.
It is quite clear therefore that under this utilitarian criterion
the best course of action for Juan is to inform Pedro.

Using the egoistic or hedonistic criterion, Juan may feel
that if Pedro does not know of the promotion, then he is in a
better position to get the promotion. In this instance, Juan's
optimal course of action would depend on which of the utility
values,.

f(Juan informs Pedro) = Expectation of Juan

f( Juan does not inform Pedro) = p-q

p/2

r

..

is bigger. To many people q is worth so much more than any
financial consideration that even in this instance the first
course of action is the optimal way.

The following is another example of an ethical game bor
rowed from R. B. Braithwaite's book, The Theory of Games
as a Tool for the Moral Philosopher.

Suppose Luke and Matthew are two bachelor occupying a
duplex house with very poor accoustics so that Luke hears eve
rything louder than a conservation that takes place in Mat
thew's flat and vice versa. Suppose further that each of them
has only the hour from 9 :00 to 10:00 P.M. for recreation and
no other. Luke's form of recreation is to play classical music
on the piano for an hour without pause and Matthew's amuse
ment is to improvise jazz on the trumpet for an hour at a time
too. That whether or not one of them performs on any even
ing has nothing to do with the desires of the other to perform
on any evening. The satisfaction derived from playing be each
of them affected of course by whether the other is playing or
not, but in this instance what one gets does not come from
the other; in other words their game is no longer zero-sum.
One may write a possible payoff matrix for their game as:
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Luke
plays

does not play

plays

(

(1 , 2 )

(4,10)

Matthew

does not play

(7,3) )

(2 ~ 1)

For example, (4,10) here indicated that Luke gets 4 utiles of
satisfaction and Matthew 10 utiles in the event that Luke does
not play and Matthew plays. The problem is to determine the
best palusible way of settling the ethical dispute between them.

The method of solution suggested by Howard Raiffa starts
by transforming the (utility) payoff matrix into a canonical
form such that 0 is the worst payoff of anybody and 1 his
best. If this procedure were then applied to the above payoff
matrix, the new payoff matrix becomes

•

If these tranformed payoff values are plotted in a rectangular
coordinate system, then one would obtain as possible payoff
values for the game the set of all points inside the following
polygon:

(~, 0)
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Each pair of mixed strategies (x,"l-x), (y,1-y) for Luke and
Matthew respectively will achieve a point in this polygon as
payoff and conversely, each point-payoff inside the above
shaded area can be achieved by some pair of strategies as long
as the game is rendemized or played randomly many times.

If (a.b ) and (a', b') are any two point-payoffs in the convex
polygon above such that a is greater than or equal to a and
b is greater than or equal to b', then (a,b) is a more desirable
payoff to achieve. Thus Luke and Matthew need not play to
achieve any point-payoff jointly dominated by some other pay-

, • off. The undominated point-payoffs of a game is called the
Pareto optimal set. In the so-called von Neuman-Morgenstern
theory, these point-payoffs constitute the solutions of the game.
The set of all points between and including (1/2,1 j and (1,2/9)
is the Pareto optimal set for Luke and Matthew's game.

Obviously, Luke desires (1/2, 1) most, i.e., that he plays
and Matthew remains silent, while Matthew wants (1,2/9)
most. None of them, however, can realized his heart's desire
without the other's knowing and altruism. If Luke and Mat
thew were to both play, their payoff would only be (0, 1/9)
which is clearly not the most desirable thing for both of them.
Of course, should both of them play their maximin strategies,
then Luke will guarantee himself a payoff of 1/6 and MatthewI. will be assured of a 1/9 payoff, but not one of them would get
the most of what he can. How should they cooperate for their
mutual benefit.

The suggestion is that they first play the zero sum (com
petitive) game whose payoff matrix consists of their relative
payoff advantages and then resolve that they fully cooperate
with one another to increase their payoffs as much as possible
while preserving their relative advantages.

The relative advantages of Luke over Matthew for each of
the four possible act-combinations is given by the matrix
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It is easily seen that (l,l) is a saddle pomt and hence the cor
responding value for this game of relative advantages is
(0,1/9). Now, any point on the line passing through this point
with slope 1 will represent a payoff with the same relative ad- .

. f 1 h d •vantage 0 - 9- for Luke •. T e goo cooperative strategy

for Luke and Matthew is to attempt to achieve the payoff

(15/23, 158/207 = ~~ (1/2, I) + JJ (1, 2/9).

the point on the Pareto optimal set intersected by the line of

1 · d .1 . f hre ative a vantage - T an aver of Luke. T e suggested

arbitration then should be that Matthew should play while
Luke remains silent 16 out of 23 nights and Luke should play
while Matthew be silent 7 out 23 nights.

There are other suggested solutions to this game, but a
discussion of them here will sink us into theory deeper than
we want to be.

5. Applications to Statistics.

Any statistical decision problem is a two person game with
Nature as one player and the statistician as the other. The sta-
tistician in a statistical game spies on Nature by performing
experiments. Thus in the background of any statistical game
is a sample space X which describes all possible outcomes of
his experiments. Associated with the sample space X is a col-

lection of distribution ftmctions Pe each determined by one

more parameters e such that
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or / Pe (x)dx = 1.
x

..

•

Any subset E of X constitutes an event and

Pe(E) = L Pa(x)
xeE

The collection of all possible values of 0 constitute the set
of all possible pure strategies of Nature and their correspond
ing probability distribution functions her mixed strategies.

As a result of an experiment the statistician chooses a
course of action a among a collection A of all possible

courses of action. The function d which associates with each

outcome x of an experiment a course of action a (so that

d( x) = a) is called a (statistical) decision function. By con

glomerating all outcomes x associated with a fixed course of

action a, the whole sample space X is then partitioned into

a collection of disjoint subsets each associated with a fixed
course of action. For example, in the well-known one-tailed
t-test, the sample space ?C of all real numbers t is partitioned
into two disjoint subsets, one consisting of all real numbers t
less than the true value t and the other of all real numbers

o
t greater than or equal to r . In the event that t falls with-

o
in the later set, the course of action associated with it is the
rejection of the null hypothesis, while when it falls on the for
mer set, the null hypothesis is accepted. The collection D of
all possible decision functions constitutes the possible strate
gies of the statistician. Like the set X of possible outcomes
of the experiment, D is often infinite in practice.

Experiments cost time and money so that decisions based

on a wrong estimate of e may sometimes be too expensive.
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Suppose that we have agreed to adopt a magnitude of this nu

merical loss ·(denoted by tea, 9» which depend on the

action a and parameter 9 The utility payoff matrix for

a statistical game is the expected value of this loss which either

L(d, ) =L .t(d(x),e)Pe(x)
xeX

ar

L(d,S). =/ t(d(x),e)Pe(x)dx.
X

A statistician's optimal course of action must minimize this
expected loss or maximize its negative value (which is one's
expected gain).

Before undertaking a more general application of the
theory of statistical decision-making, let us first consider the
following household example:

•

Juana de la Cruz is thinking of buying a new dress for the
corning town fiesta. She has learned from past experience that
if her husband Juan is in a good mood, then she can easily get
his consent to buy a very expensive dress. On the other hand,
if he is in a bad mood, he may not even agree to anything she '* \
says. Before making a final decision, Juana decided to per-
form an experiment: she will tell him upon corning horne that
the afternon paper got lost. She expects anything like one of
the following statements:

x . "Newspapers sometimes get lost";
1

)l. "I told you you should have a place to keep news
2

papers" ;

x. "Why did I ever get married".
3
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Of course; the two possible states of Nature in this instance are:
s .' Juan is in a good mood;

1
s. Juan is in a bad mood.
2

The three possible courses of action for Juana to take include:
s. Buy an expensive dress;

I
s. Buy an ordinary dress;

2
s. Do not buy any dress at all:
3

Considering her personal tastes and idiosyncracies, Juana
thought that her utility losses may be relatively written in

matrix form .i(a
i

• Sj) as follows:

States of Nature

8
1

8 2 ,

aJ
Based on Juana's long experience with Juan, she thought the
following table of probabilities is a very good indicator of Juan's
moods:

Probability of observing xi given that 8 = Sj

.., (Xi)·8
j

~ ~ X)

8 1 ("65 025 .10 )

'32 .20 .30 050
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How should Juana act under circumstances. Her collection of
possible strategies or decision functions are tabulated as fol

lows.

•

Xl ~ x3
xl 1C:2 x3

d1 81 81 81 d15 8:2 82 83

d2 81 81 82
d16 ~ 8

3 8 1 •d) 8 1 ~ 8J
d1? . 62 8) 82

d4 a1 ~ 8 1
d18 S:2 8 3 8J

d5 81 S:2 ~
d19 8

3 8 1 a1

db 8 1 ~ 8 3
d20 8) 81 ~

d? 8 1 8J 81 ~l 8
3 81 Ii)

dB 8 1 8 3 8:2 ~2 8 3 8z 8 1

d9 81 83 8) ~3 6 J ~ ~

dID 82 81 8 1 ~4 8.3 82 83 -\dll ~ 8 1 8:2 d:2 5 8
3 8.3 ~

d12 ~ ~ 8 J
d26 8 3 8 3 ~

<;'3 8:2 ~ 81 ~7 8 3 .8) 8 3
d14 ~ 8:2 ~

Many of these decision functions, it is easy to see, are quite
unreasonable.:
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By using the relations

R(di,Sj) =max L(dk'Sj) - L(di,Sj)
k

we obtain the following matrices of Juana's expected losses

~.
and expected regrets:

L(di,sj) , R(di'sj)

~ ~~ ~ ri2"
d1 .00 -5.00 ~l .00 3.00

~
-.10 -4.00

~
.10 2.00

-.30 -3.50 .30 1.50
d3 -.25 -4.40 d3 .2; 2.20
d4 -.35 -3.40 d4 .35 1040
d5 -.55 -2.90 d5 .55 .90

~ -.75 -4.10 d6 .75 2.10

~
-.85 -3.10 d7 .85 1.10

-1.05 -2.60 d8 1.05 .60

dio -.65 -4.60 ~o .65 2.60

dU -.75 -3.60 dU .75 1.60
d12 -.95 -3.10

~
.95 1.10'. ~

-.90 -4.00 .90 2.00·
f. -1.00 -3.00 *~ 1.00 1.00

I
d15 -1.20 -2.50

~5
1.20 .50

d16 -1.40 -3.70 1.40 1.70

*~
-1.50 -2.70 ~~ 1.50 .70
-1.70 -2.20

~8
1.70 .20

-1.95 -4.40 1.95 2.20

~6 -2.05 -3.40 d26 2.05 1.40

~~
-2.25 -2.90

~~
2.25 .90

-2.20 -3.80 2.20 1.80

~~
-2.30 -2.80

~~
2.30 .80

-2.50 -2.30 2.50 •.30
-2.70 -3.50

~5 2.70 1.50

~~
-2.80 -2.50~

~6
2.80 .50

-3.00 -2.00
~7

3.00 .00

139

l •



PHILIPPINE STATISTICIAN - SEPTEMBER, 1962

Juana's maximm and rmmmax regret strategies are res
pectively d and d . The first strategy recommends that

18 14
she buys an ordinary dress in the event that Juan answers
something like "Newspapers sometimes get lost" and that she
desist from buying a dress otherwise. The second minimax
regret strategy advises she should buy an ordinary dress in
any case. Of course, if she knows that her husband is in a
good mood with a prbability p, then Juana's optimal decision
would be that one which maximizes the expectation of her ex
pected loss

For instance, if the probability that Juan be in a good mood is
2/3, then d would be the best decision for Juana.. 6

A branch of statistics wherein decision theory can find a
fitting expression is in quality control. Consider, for example,
manufactring firm which regularly buys a certain commodity
in lots of N for use as a raw material. Without any inspection
procedure, the firm may accept very poor lots which conse
quently may lower the quality of their products to the detri
ment of the firm's reputation. On the other hand, consistent
100% inspection of a lot is very expensive. The problem that
presents itself therefore is how to find a systematic decision

procedure to use in such circumstances. Suppose c 1 is the

•

•

.\cost of inspecting each item of a lot and c 2 is the cost of

scrapping an item. Two decisions are possible: either to ac
cept the lot (d 1) or inspect the lot 100% (d2)' Their respec-

tive costs are Nec2 and Nc where e is the proportion of
1

defectives. If pee) denotes the (a priori) probability distri-

bution of e and x and 1 - x are probabilities associated
with decisions d 1 and d 2 respectively, then the expected

value of the firm (gain) is

140

•



• THE MATHEMATICS OF DECISION-MAKING

L(x,p)
1

= - 0' (xN902 ~ (1 - X)No1)p(9)de

1
=-No1 - Nx 0' (9°2 - 01)p(e)d9

•

..
In actual practice, an approximation of p(9) is often

known from past experience, but if no such information is
available, the maximin criteria recommends the mixed strategy
(x, l-x ) which achieves the

1 '
-.x m1n L(x,p) = max min (-N~-Nxl (902-01)p(e)d9).X p 0

Since the probability function p(e) may be zero for

values of such that a02 - "J. is negative, then

r

1
max min L(x,p) = max min (-Nc1-Nx I (9c2-c1)P(9 )d8) ,

x p x P c1. -
°2

= max (-N~ - Nxc), for some positive
constant o ,

The maximin is therefore attained when x = 0, that under

== k ( a con-pca)

Hence max min
x p

L(x,p) = max L(x,k), and therefore, the maximin strategy is
realized by x = 0 when c = 2c is positive and by x = 1

2 1
when c = 2c is negative.

2 1

100% inspection of the lot. However, if

stant ), then L(x,p) = -Nc -2!-Nkx(c -2c).
1 2 1

•
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But now, suppose that a sampling inspection of n items
ou tof the lot is made and to resort only to a 100% inspection
when the number of defectives i is greater to or equal to some
number s. The cost of of decision d is then

1

and the expected value of the gain is given by

1
1 s;:.t n 1 n-i

L(s,p) =- (~(1)9 (1-9) (ncl ~ (N-n)902 )
1=0 sr n 1 n-1(1 - (1)9 (1-9) )Ncl )p( 9)d9

1=0

srJ. .L 1=-No1 - (N-n)c2 2.. (~) f 9 ~l(l_9)n-lp(9)de
1=0 0

s~ 1
~ (N-n)c1 L (~) f 91(l,..9)n-1 p(9)d9.

1=0 0
If p(8J is assumed to be some constant k and the above in-

tegration is performed, then the following expressions will be
obtained:

s~ i 1
~ (N-n)ko1 ~ ..L(l_ L (n'U)9j(l_9)n~1-jJ

1=0 n.a.l j=O j 0

=-No
l

_ (N-n)ks (°2 (s~l) )
(n~l) 2(n~l) - 01 0

142

•

.1

•



• THE MATHEMATICS OF DECISION-MAKING

Thus, the criterion 'of Laplace recommends a choice of s as
close as possible to the value of

201(n + 2) °2 25 N: 1,000,-...;;;.---- - 1. For -- = ,
02 °1

and n = 100, this number s is approximately 7. The advise
is then to accept a lot if in a random sample of 100 from the
lot there are not more than 7 defectives.

A solution which maximizes L(x, p) for a given p(e)
is also called a Bayes solution. For example, if

p(9) =25 for 0.01 ~ 9 ~ 0005

and p(9) = 0 for all other values of 9 the maximum of

above expectation L(x, p) or the minimum loss of the firm
is achieved when s = 7, The problem can also be viewed in
terms of minimax regret.

'6. Applications to Economics.

The following is one of the many special instances of' the
linear programming problem applied to economics. This is
often called the transportation problem.

A certain company has four warehouses and six stores. It
has been so decided by the board of directors of the company
to transfer 220 tons of goods from the four warehouses to the
six stores as follows:r

•

Store

2

3

4

5

6

Amount to be transported

40 tons

40 tons

60 tons

20 tons

40 tons

20 tons
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Of the 220 tons of goods, 50 tons are coming from warehouse
1, 60 tons from warehouse 2, 20 tons from warehouse. 3, and
90 tons warehouse 4. The shipping costs of one ton of the com
modity from warehouse i to store J. c .. , are given by the

IJ

•

denote the amount of goods from warehouse i

following matrix (in pesos):

1 2 3 4 5 6

1 90 120 90 60 90 100

2 70 90 70 70 50 ·50

60 50 90 110 30 110 •J

4 60 80 110 20 20 100

,
The problem is to determine the most economical way of ef-
fecting the transfer. .

Let x ..
IJ

to be sent to store j. Then, mathematically, the problem is to
find the smallest value of the linear function

9OX11+120X12+9Ox13+60x14+90x15+100x16+7~1+3~2

+70x2J+.7Ox24+5~5+50x26+6OxJl+50x32+9OxJ3+11Ox34

+3Ox35+110x36+60x1.1+80x42+110x4J+20x44+20x1.5+100x4~

subject to the following conditions:
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~l + ~l + xn + x41 = 40,

XU + "22 + x32 + x1;2. =40,

~3 + ~3 + xJ3 + x43 = 60,

~ + ~4 + x34 + x44 • 20,

xl 5 + x25 + x35 + x45 =40,

x16 + x26 + x36 + x46 =20,

xII + x12 + x13 + x14 + xl 5 + x16 = 50,

"21 + ~2 + x23 + x24 + ~ 5 + ~6 = 60,

x31 + x32 + x3J + x34 + x35"+ x
36

=20,

Xu + xa +" x43 + x44 + x45 + xt..6 = 90.

There is a known iterative procedure that solves this problem
by hand computation, but this is out of the question in the
present discussion. The optimal solution, it can be easily ve
rified, is given by the set of

Xl) = 50, X:22 =40, x26 =20, x31 =10, xn = 10,

• x41 = )0, x44 =20, and x45 =40, with all other

xij's equal to zero.

•

The first linear programming ever solved is called the nu
trition problem. Here is a very simplified form.

The two foods rice and fish are essential components of
any Filipino's diet. Each of these contains the nutrients pro
tein measured in grams and the other measured in calories.
The nutrient contents of one kilo of fish are 4,000 calories and
200 grams of protein. On the other hand, one kilo of rice con
tains 2,000 calories and 50 grams of protein. It is known that
the daily requirements of a good diet is 3,000 calories and 100
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grams of protein. It is also known that one kilo of rice costs
a peso while one kilo of fish costs 2 pesos. What is the most
economical combination for a good diet?

If x and y denote the amounts of rice and fish res
pectively needed, then the problem is to minimize the cost
function 100x + 200y (in centavos) subject to the inequalities

x ~ 0, y ~ 0,

2,00OK ~ 4,00Qy ~ 3,000

50x + 200y ~ 100.

Graphically, the solution is easily read from

I
" - _ _ . 2000x1+ 4000y =3000

lOOlt 4 200y =k '-',._--- --

The solution is the point of intersection of the lines 2x + 4y = 3
and x+ 4y :; 2, that is x = 1 and y = 1/4.

The next application is an example of what is called dyna-'
mic programming. This is a problem which involve a number .' 1
(sometimes an infinite number) of decisions made in the
course of time. Each decision is dependent on all past deci-
sions and in turn affects all decisions in the future.

A man is engaged in buying and selling rice, which re
quires a bodega for storage. His bodega has a maximum capa
city of 1,000 cavans of rice. His policy is to order at the mid
dle of the month, for delivery in the beginning of the follow
ing month. During the month he can sell any amount of rice
available in his bodega at the time. If he starts the year 1962
with 500 cavans in stock, how should he purchase and sell each
month in order to maximize profits, when the cost and sales
price cavan for each month are given by the following table:
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Cost Prices Sales Prices

January 15 P20 January P23

February 14 21 February 24

March 15 22 March 22

April 15 22 April 20

May 15 22 May 23

June 15 22 June 27

July 15 27 July 25

August 15 24 August 25

September 15 21 September 23

October 15 28 October 25

November 15 22 November 25

December 15 23 December 26

Let f (s) = maximin profit that can be achieved in the re-
n maining n months of the year when the exist

ing stock at the time is s cavans;

xk == the number of cavans of rice to be sold dur
ing the kth month,

y = the number of cavans of rice to be ordered in
k the 15th of the kth month;

c = cost of rice per cavan during the kth month;
k

d = selling price of rice per cavan during the kth
k month.
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Then

0< x < s= l3-n = 13-0

o ~ Y13-n ~ 1,000 - (s13_n - ~3-n)

Based on this formula, the policies for each month·

are computed as follows:

December:

f 1 (s12) =max { 26x12 - 23Y12 } ::: 20012 )

XU =9 12 , Y12 =0;

November:

£2(Sll) = max {25Xll - 22Yll "" 26(sll~Y11-XU)}

=25s11 ~ 4,000,

XJ.1 = sll' Yu flll 1,000;

october:

f
3

(S10) =max{ 25X10-28Y10~25(S10JJ.Y10=~10H'4,OOO}

=25s11 ~ 4,000,

Xw :: a( < 11>000), 110 = 0;
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September:

1:
4

(6
9)

= max {23x9-2ly9+25(69+Y9-Xe;H4,OOO }

=2389 + 8,000,

Xc; =89, Y9 =1,000;

August:

1:
5

(68) = max {25Xg-24YS+2J(sS+YS-Xg).a.8,000 }

=2588 ... 8,000,

Xg = 8 a, y8 = 0;

~:

f 6 (67) =max {25X7-27yrf25(87+Y7-~).J.8,OOO}

= 25s7 ... 8,000,

x 7 = b« 57)' Y7 =0;

J'lme:

f 7(66) = max {2?x6-25Y6"'25(66+Y6-~)~'000}

::: 27s6 ... 8,000,

x6::: 66' Y6 =67 « 1,000);

May:

f 8 (sS) = max {23xS-22YS.J.2?(S5+Y5-X5).a.8,Ooo }

= :2.38 5 .. 13,000,

x5 =8 5, Y5 =1,000;
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April:

1'9(84) = .max {20x4-22Y4+23(s4+Y4-x,)~13,000}

=20s4 ... 14,000,

x4 = sJ.' YL = 1,000;

March:

f lO(s3) =max { 22X3-22Y3+20(slY3-x3)~14,ooo}.

=2283 "" 14,000,

x J = 8 3, YJ = OJ

February:

1'11(82) =max { 2~-2ly2+22(82"'Y2-:K2)~~'000}

= 248 ... 15,000

~ =82' Y2 =1,000;

•

~

I. ~

January:

f 12 (81) = max { 23xl-2Oyl"'24(Bl""Y1-~)"'15,OOO } ..

I: 2381 "" 19,000,

~ =81 = 500, Y1 =1,0000
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Thus the maximum profit achievable is t (s ) - P30,500.
12 1

The profit is achieved by following program of buying and sell
ing:

x Y
k

s
k k

January 500 1,000 500

February 1,000 1,000 1,000

March 1,000 a 1,000
I ",,'e April 0 1,000 a

May 1,000 1,00v 1,000

June 1,000 c 1,000

July b 0 c

August c - b a c - b

September 0 1,000 0

October a a 1,000

November 1,000-a 1,000 1,000-a

December 1,000 a 1,000.

7. Applications to Political Science.

• As a final example of decision making solved by mathema-
tical methods, we shall consider the following problem in po-
litics.

In a certain election year, the Liberal and Nacionalista
Party conventions both agreed to let their party nominations
for vice-president be decided by their respective directorates.
Based on a sampling of public opinion conducted by the Be
bot Statistics, Inc. the following odds were recorded for the
various nominees.

•
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Nationalista Odds Liberal

Sumulong 2 :1 Manglapuz

Sumulong 3:2 Cases

Sumulong 3:5 Diokno

Aytona 1 :2 Manglapuz

Aytona 4 :1 Cases

Aytona 1 :3 Diokno

Laurel 3 :1 Manglapuz

Laurel 2 :1 Cases

Laurel 3:7 Diokno

The political bosses of both parties have decided to select their
respective candidates in accordance with the best mathemati
cal decision procedure.

If the utility index payoff is taken as the probability of
winning, then the payoff matrix for the two parties may be
written as

•

:'

• 1

Liberal

M C 0 •
S (.667, .33J) (0600, 0400) (.375. .625»)

Naoiona-
A (.333, .667) (.800, .200) (.250, 0750)liste
L <0750, 0250) (.667, .333) ( • 300 , •700) I

With this payoff matrix the game is not zero sum, but the
game can be converted into a zero sum game by substracting
the payoff entries of one party from the other's. For instance,
the payoff of the Nacionalista party is given by
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(

0333

-.333
0500

.200

.600

0333

-0250 \

-0500 )
0400

It is easy to see that (1,3) is a saddle point of this matrix
and hence the optimal choices for the two parties are Sumu
long and Diokno.

If the odds between Laurel and Diokno were interchanged
>• so that the payoff matrix becomes

(

' .333

-.333

.500

.200

0600

.333

-.250)
-0500

-0400

then there is no longer a saddle point strategy and the game
has to be resolved by a randomization of strategies. It is clear
that the probabilities of Laurel respectively dominate the pro
babilities of Sumulong and hence without loss of generality
Sumulong may be dropped off from the nomination race. The
resulting new matrix is then

• (-.333

\ .500

0600

0333

-.500 )

0400

Again, the probabilities of Diokno which are the negatives of
the third column respectively dominate the probabilities of
Manglapuz which are the negatives of the first column and
hence Manglapuz may be dropped also in the race. The remain
ing payoff matrix is

•

(

. 600

.333

-.500\ 0

.400 )
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Now, if (x, l-x ) and (y, l-y) respectively denote the mixed
strategies of he Nacionalista and Liberal parties, then the opti
mal solutions are found by solving the following inequalities:

•

0600x + 0333(1 ~ x) ~ v,

- •500x + 0400 (J. - x) ~ v,

.60Oy - .500(1 - y) ~ v,
0333y + 0400(1 - y) ~ v.

The actual solutions are obtained by simply considering the

case when all inequalities are equalities: they are (1~~7' ii~~)

.2.QQ.. sa: . 4065 .
and (1167' 1167) The value of the game IS 11670 III favor of

the Nationalista Party. The mixed strategies weigh heavier for

Aytona and Cases.
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